Microcosm studies of the role of land plants in elevating soil carbon dioxide and chemical weathering

نویسندگان

  • C. Baars
  • T. Hefin Jones
  • Dianne Edwards
چکیده

[1] A decrease in atmospheric carbon dioxide (CO2) concentration during the midPalaeozoic is postulated to have been partially the consequence of the evolution of rooted land plants. Root development increased the amount of carbonic acid generated by root respiration within soils. This led to increased chemical weathering of silicates and subsequent formation of carbonates, resulting in lower atmospheric CO2 concentrations. To test this assumption, analog (morphologically equivalent) plant species, ranging from those possessing no roots to those with complex rhizomatous rooting systems, were grown in trays within microcosms at ambient (360 ppm/0.37 mbar) and highly elevated (3500 ppm/3.55 mbar) atmospheric CO2 concentrations in a controlled environment facility. Substrate CO2 concentrations increased significantly under elevated atmospheric CO2, and Equisetum hyemale (L.). The latter is postulated to result from the effects of deeply rooted plants, elevated atmospheric CO2 concentrations, or both. Plants with simple or no rooting systems or the addition of dead organic matter as a substrate for microorganisms did not enhance substrate CO2 concentrations. Citation: Baars, C., T. Hefin Jones, and D. Edwards (2008), Microcosm studies of the role of land plants in elevating soil carbon dioxide and chemical weathering, Global Biogeochem. Cycles, 22, GB3019, doi:10.1029/2008GB003228.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Different Land Uses on Physical, Chemical and Biological Characteristics of Soil, Plot No. 4, Shahriar, Tehran Province

Background and objectives: Soils are one of the largest carbon stores in the biosphere with the highest carbon storage potential to mitigate the effects of climate change. The aim of this study was to investigate different land uses on carbon storage and other physical, chemical and biological characteristics of soil in Shahriar. For this purpose, rangelands including 26-year-old, 16-year-old a...

متن کامل

The Impacts of Land Use Change in Soil Carbon and Nitrogen Stocks (Case Study Shahmirzad Lands, Semnan Province, Iran)

Soil carbon and nitrogen contents play an important role in sustaining soil physical and chemical quality and help to have healthy environments. The continues conversion of rangelands to arable lands has the potential to change carbon and nitrogen sequestration. In this study to evaluate the effects of land use change on soil organic carbon and nitrogen stock, forty samples collected from north...

متن کامل

Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering.

Conventional row crop agriculture for both food and fuel is a source of carbon dioxide (CO2) and nitrous oxide (N2O) to the atmosphere, and intensifying production on agricultural land increases the potential for soil C loss and soil acidification due to fertilizer use. Enhanced weathering (EW) in agricultural soils-applying crushed silicate rock as a soil amendment-is a method for combating gl...

متن کامل

Estimation of Soil Carbon Sequestration Rate in Steppes (Case Study: Saveh Rudshur Steppes)

Since Renaissance, the natural ecosystems have fallen into a complete state ofdisarray due to the rise in the amount of carbon dioxide. Soil, the unsparing stuff, is one of themajor sources of carbon storage, and plays a paramount role in the global equilibrium ofcarbon as well as carbon sequestration. Given that Iran is benefiting from vast steppes, therate of carbon sequestration in them dese...

متن کامل

Effects of Land use Changes on Some Physiochemical Properties of Soil of Saman Region (Chaharmahal va Bakhtiari Province- Iran)

Objective: Soil organic carbon has been the most important soil quality measurement factors and has intense relation with soil physical, chemical and biological characteristics. Organic matter and its components are important factors of soil aggregates constitution and stability and play significant role in its structure. So, this research has been done for achieving this purpose. Methods: This...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008